Applications of Analytical and Bioanalytical Methods


 
Image result for Applications of Analytical and Bioanalytical Methods
               
Dr. Vakhtang Barbakadze will be participating at the World Conference on Analytical and Bioanalytical Chemistry held by Scientific Federation. Dr. Vakhtang Barbakadze has completed his Ph.D. and D.Sci. in 1978 and 1999 from Institute of Organic Chemistry, Moscow, Russia and Institute of Biochemistry and Biotechnology, Tbilisi, Georgia, respectively. He is the head of department of plant biopolymers and chemical modification of natural compounds at the Tbilisi State Medical University I.Kutateladze Institute of Pharmacochemistry. 1996 and 2002 he has been a visiting scientist at Utrecht University (faculty of pharmacy), The Netherlands, by University Scholarship and The Netherlands organization for scientific research (NWO) Scholarship Scientific Program, respectively. He has published more than 92 papers in reputed journals. Dr. Vakhtang Barbakadze is going to talk on ‘Structure characterization of plant macromolecule – prospective therapeutic agent’ A brief summary is presented here.

The 13C NMR experiment of water-soluble high-molecular preparations from different species of Boraginaceae family was carried out and simulated 13C NMR spectrum was calculated for 2-hydroxy-3-(3',4'-dihydroxyphenyl)-propionic acid residue (I) of the corresponding polyether using ACD/CNMR Version 1.1 program. Signal positions in the 13C NMR spectrum of this hypothetical structure (I) coincided satisfactory with the experimental values. According to 13C, 1H NMR, APT, 2D heteronuclear 1H/13C HSQC and 2D DOSY experiments the main structural element of these preparations was found to be a regularly substituted by 3,4-dihydroxyphenyl and carboxyl groups polyoxyethylene backbone, namely poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene] or poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDPGA). The synthesis of racemic monomer of PDPGA 2,3-dihydroxy-3-(3,4-dihydroxyphenyl)propionic acid (DDPPA) and its enantiomers (+)-(2R,3S)-DDPPA and (–)-(2S,3R)-DDPPA was carried out via Sharpless asymmetric dihydroxylation of trans-caffeic acid derivatives using a potassium osmate catalyst and enantiocomplementary catalysts cinchona alkaloid derivatives (DHQ)2-PHAL and (DHQD)2-PHAL as chiral auxiliaries. The opposite configuration of both enantiomers was confirmed by measurements of the optical rotation (+)/(–)-values and circular dichroism spectra. The determination of enantiomeric purity was performed by HPLC analysis. PDPGA and DDPPA exerted anti-cancer efficacy in vitro and in vivo against human prostate cancer (PCA) cells via targeting androgen receptor, cell cycle arrest and apoptosis without any toxicity, together with a strong decrease in prostate specific antigen level in plasma. However, our results showed that anticancer efficacy of PDPGA is more effective compared to its synthetic monomer. Overall, this study identifies PDPGA as a potent agent against PCA without any toxicity, and supports its clinical application.
For more information : http://www.scientificfederation.com/analytical-chemistry-2018/

0 comments: